
ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 1

Article Info

Date Received: 02/06/2025;

Date Revised: 08/07/2025;

Available Online: 02/08/2025;

FPGA-Based Implementation of IEEE 754 Single Precision
Floating Point Multiplier

K. Vijaya Swathi 1*, P. Swarnalatha2

Author Affiliations

1. Asst. Professor, Department of Electronics and Communication Engineering, Sri Venkateswara

Institute of Science And Technology -Kadapa, India. swathiprathap16@gmail.com

2. PG Scholar , Department of Electronics and Communication Engineering, Sri Venkateswara

Institute of Science And Technology -Kadapa, India. swarnaokta555@gmail.com

DOI: 10.5281/zenodo.16728999

ABSTARCT

This paper presents an efficient implementation of a single-precision floating point multiplier
compliant with the IEEE 754 standard, optimized for deployment on a Xilinx Virtex-5 FPGA. The
design is developed using VHDL and follows a pipelined architecture to ensure high performance
while maintaining technology independence. It includes mechanisms for handling overflow and
underflow conditions; however, rounding is intentionally omitted to preserve higher precision,
particularly for applications such as Multiply and Accumulate (MAC) operations. The implemented
multiplier achieves a performance of 301 MFLOPs with a latency of three clock cycles. Functional
verification was carried out against the Xilinx floating point IP core to ensure correctness.

Keywords: Floating Point, IEEE 754, Multiplier, FPGA, VHDL, Pipelining, MAC Unit

1. INTRODUCTION

Floating point representation is a widely used method for encoding real numbers in binary, and the
IEEE 754 standard defines two primary formats: the Binary Interchange Format and the Decimal
Interchange Format. Among these, multiplication of floating point numbers plays a vital role in
digital signal processing (DSP) applications that require a wide dynamic range. This paper
specifically focuses on the single-precision normalized binary interchange format. As illustrated in
Fig. 1, the IEEE 754 single-precision format consists of three components: a 1-bit sign (S), an 8-bit
exponent (E), and a 23-bit fraction (M or mantissa). An implicit leading bit, ‘1’, is added to the
fraction to form the significand, resulting in a 24-bit value. A floating point number is considered
normalized when the exponent is greater than 0 and less than 255, and the most significant bit
(MSB) of the significand is 1.

mailto:swathiprathap16@gmail.com
mailto:India.%20swarnaokta555@gmail.com

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 2

Figure1: Single precision IEEE floating point format

Z = (-1S) * 2 (E - Bias) * (1.M) (1)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23;
Bias = 127.
Significant is the mantissa with an extra MSB bit.
This research has been supported by Mentor Graphics.
Multiplying two numbers in floating point format is done by 1- adding the exponent of the two
numbers then subtracting the bias from their result, 2- multiplying the significand of the two
numbers, and 3- calculating the sign by XORing the sign of the two numbers. In order to represent
the multiplication result as a normalized number there should be 1 in the MSB of the result (leading
one). Floating-point implementation on FPGAs has been the interest of many researchers. In [2], an
IEEE 754 single precision pipelined floating point multiplier was implemented on multiple FPGAs (4
Actel A1280). In [3], a custom 16/18 bit three stage pipelined floating point multiplier that doesn’t
support rounding modes was implemented. In [4], a single precision floating point multiplier that
doesn’t support rounding modes was implemented using a digit-serial multiplier: using the Altera
FLEX 8000 it achieved 2.3 MFlops. In [5], a parameterizable floating point multiplier was
implemented using the software-like language Handel-C, using the Xilinx XCV1000 FPGA; a five
stages pipelined multiplier achieved 28MFlops. In [6], a latency optimized floating point unit using
the primitives of Xilinx Virtex II FPGA was implemented with a latency of 4 clock cycles. The
multiplier reached a maximum clock frequency of 100 MHz.

2. FLOATING POINT MULTIPLICATION ALGORITHM

As stated in the introduction, normalized floating point numbers have the form of

Z= (-1S) * 2 (E - Bias) * (1.M).

 To Multiply two floating point numbers the following is done:

1. Multiplying the significand; i.e. (1.M1*1.M2)
2. Placing the decimal point in the result
3. Adding the exponents; i.e. (E1 + E2 – Bias)
4. Obtaining the sign; i.e. s1 xor s2
5. Normalizing the result; i.e. obtaining 1 at the MSB of the results’ significand
6. Rounding the result to fit in the available bits
7. Checking for underflow/overflow occurrence

Consider a floating point representation similar to the IEEE 754 single precision floating point
format, but with a reduced number of mantissa bits (only 4) while still retaining the hidden ‘1’ bit for
normalized numbers:

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 3

A = 0 10000100 0100 = 40, B = 1 10000001 1110 = -7.5
To multiply A and B

1. Multiply significand:
 1.0100

 × 1.1110
 00000
 10100

10100
10100
10100____

 1001011000

 2. Place the decimal point: 10.01011000
 3. Add exponents: 10000100
 + 10000001
 100000101

 The exponent representing the two numbers is already shifted/biased by the bias value
(127) and is not the true exponent; i.e. EA = EA-true + bias and EB = EB-true + bias
And

 EA + EB = EA-true + EB-true + 2 bias

So we should subtract the bias from the resultant exponent otherwise the bias will be added

twice.

 100000101
 - 01111111
 10000110
 4. Obtain the sign bit and put the result together:
 1 10000110 10.01011000
5. Normalize the result so that there is a 1 just before the radix point (decimal point). Moving the
radix point one place to the left increments the exponent by 1; moving one place to the right
decrements the exponent by 1.
 1 10000110 10.01011000 (before normalizing)
 1 10000111 1.001011000 (normalized)
 The result is (without the hidden bit):
 1 10000111 00101100
6. The mantissa bits are more than 4 bits (mantissa available bits); rounding is needed. If we applied
the truncation rounding mode then the stored value is:
 1 10000111 0010.

In this paper, we present the design of a floating point multiplier that does not include built-in
rounding support. Instead, rounding can be implemented as a separate functional unit, which may be
accessed by either the multiplier or a floating point adder. This modular approach enables higher
precision, particularly when the multiplier is directly coupled with an adder in a Multiply and
Accumulate (MAC) unit. The structure of the multiplier is illustrated in Fig. 2. The operations
exponent addition, significand multiplication, and sign computation—are performed independently
and in parallel to optimize performance. The significand multiplication is carried out on two 24-bit
operands (including the implicit leading 1), producing a 48-bit intermediate product (IP). This IP is

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 4

represented as bits [47:0], with the binary point positioned between bits 46 and 45. The subsequent
sections describe each functional block of the floating point multiplier in detail.

Figure 2: Floating point multiplier block diagram

3. HARDWARE OF FLOATING POINT MULTIPLIER

A. Sign bit calculation

Multiplying two numbers results in a negative sign number iff one of the multiplied numbers is of a
negative value. By the aid of a truth table we find that this can be obtained by XORing the sign of two
inputs.

B. Unsigned Adder (for exponent addition)

The exponent adder is responsible for calculating the sum of the exponents of the two input
operands and subtracting the bias value (127), as per the IEEE 754 standard. This operation can be
expressed as:

The addition is performed on 8-bit values, and since the significand multiplication (24-bit × 24-bit)
dominates the overall computation time, a high-speed adder for the exponent is not critical.
Therefore, a moderate-speed 8-bit ripple carry adder is used for this purpose. As illustrated in Fig.
3, a ripple carry adder is composed of a chain of full adders (and one half adder for the least
significant bit). Each full adder takes three inputs—two operand bits (A, B) and a carry-in (Ci)—and
produces a sum (S) and a carry-out (Co). The carry-out from each stage is propagated ("rippled") to
the next stage in the chain, completing the 8-bit addition.

Figure 3: Ripple Carry Adder

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 5

The addition process produces an 8 bit sum (S7 to S0) and acarry bit (Co,7). These bits are
concatenated to form a 9 bit addition result (S8 to S0) from which the Bias is subtracted. The Bias is
subtracted using an array of ripple borrow subtractors.

A normal subtractor has three inputs (minuend (S), subtrahend (T), Borrow in (Bi)) and two outputs
(Difference (R), Borrow out (Bo)). The subtractor logic can be optimized if one of its inputs is a
constant value which is our case, where the Bias is constant (127|10 = 001111111|2).

Table 1 shows the truth table for a 1-bit subtractor with the input T equal to 1 which we will call
“one subtractor (OS)”

Table 1: 1-Bit Subtractor With The Inut T=1

The Boolean Equation (2) and (3) represent this subtractor:

Difference(R) = (2)

Borrowout (Bo) = (3)

 Figure 4: 1-bit subtractor with the input T = 1

Table 2 shows the truth table for a 1-bit subtractor with the input T equal to 0 which we will call

“zero subtractor (ZS)”

Table 2. 1-Bit Subtractor With The Inut T=0

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 6

 The Boolean Equation (4) and (5) represent this subtractor:

Difference(R) = (4)

Borrowout (Bo) = (5)

Figure 5: 1-bit subtractor with the input T = 0

Fig. 6 shows the Bias subtractor which is a chain of 7 one subtractors (OS) followed by 2 zero
subtractors (ZS); the borrow output of each subtractor is fed to the next subtractor. If an underflow
occurs then Eresult < 0 and the number is out of the IEEE 754 single precision normalized numbers
range; in this case the output is signaled to 0 and an underflow flag is asserted.

Figure 6: Ripple Borrow Subtractor

C. Unsigned Multiplier (for significand multiplication)

This unit is responsible for multiplying the unsigned significand and placing the decimal point in the
multiplication product. The result of significand multiplication will be called the intermediate
product (IP). The unsigned significand multiplication is done on 24 bit. Multiplier performance
should be taken into consideration so as not to affect the whole multiplier’s performance. A 24x24
bit carry save multiplier architecture is used as it has a moderate speed with a simple architecture. In
the carry save multiplier, the carry bits are passed diagonally downwards (i.e. the carry bit is
propagated to the next stage). Partial products are made by ANDing the inputs together and passing
them to the appropriate adder.
Carry save multiplier has three main stages:
 1- The first stage is an array of half adders.
 2- The middle stages are arrays of full adders. The number of middle stages is equal to the
significand size minus two.
 3- The last stage is an array of ripple carry adders. This stage is called the vector merging stage.

 The number of adders (Half adders and Full adders) in each stage is equal to the
significand size minus one. For example, a 4x4 carry save multiplier is shown in Fig. 7 and it has the
following stages:
 1- The first stage consists of three half adders.
 2- Two middle stages; each consists of three full adders.

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 7

 3- The vector merging stage consists of one half adder and two full adders.
The decimal point is between bits 45 and 46 in the significand multiplier result. The multiplication
time taken by the carry save multiplier is determined by its critical path. The critical path starts at
the AND gate of the first partial products (i.e. a1b0 and a0b1), passes through the carry logic of the
first half adder and the carry logic of the first full adder of the middle stages, then passes through all
the vector merging adders. The critical path is marked in bold in Fig. 7

Figure 7: 4x4 bit Carry Save multiplier

In Fig. 7:
1- Partial product: aibj = ai and bj
2- HA: half adder
3- FA: full adder
D. Normalizer

The result of the significand multiplication (intermediate product) must be normalized to have a
leading ‘1’ just to the left of the decimal point (i.e. in the bit 46 in the intermediate product). Since the
inputs are normalized numbers then the intermediate product has the leading one at bit 46 or 47
1- If the leading one is at bit 46 (i.e. to the left of the decimal point) then the intermediate product is
already a normalized number and no shift is needed.
2- If the leading one is at bit 47 then the intermediate product is shifted to the right and the exponent
is incremented by 1.

The shift operation is done using combinational shift logic made by multiplexers. Fig. 8 shows a
simplified logic of a Normalizer that has an 8 bit intermediate product input and a 6 bit intermediate
exponent input.

Figure 8: Simplified Normalizer logic

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 8

4. UNDERFLOW/OVERFLOW DETECTION

Overflow/underflow means that the result’s exponent is too large/small to be represented in the
exponent field. The Exponent of the result must be 8 bits in size, and must be between 1 and 254
otherwise the value is not a normalized one. Between 1 and 254 otherwise the value is not a
normalized one. An overflow may occur while adding the two exponents or during normalization.
Overflow due to exponent addition may be compensated during subtraction of the bias; resulting in a
normal output value (normal operation). An underflow may occur while subtracting the bias to form
the intermediate exponent. If the intermediate exponent < 0 then it’s an underflow that can never be
compensated; if the intermediate exponent = 0 then it’s an underflow that may be compensated
during normalization by adding 1 to it.

 Eresult = E1 + E2 – 127 (6)

E1 and E2 can have the values from 1 to 254; resulting in Eresult having values from -125 (2-127) to
381 (508-127); but for normalized numbers, Eresult can only have the values from 1 to 254. Table 3
summarizes the Eresult different values and the effect of normalization on it.

Table 3: Normalization Effect on Result’s Exponent And Overflow/Underflow Detection

5. PIPELINING THE MULTIPLIER

In order to enhance the performance of the multiplier, three pipelining stages are used to divide the
critical path thus increasing the maximum operating frequency of the multiplier. The pipelining
stages are imbedded at the following locations:
1. In the middle of the significand multiplier, and in the middle of the exponent adder (before the
bias subtraction).
2. after the significand multiplier, and after the exponent adder.
3. At the floating point multiplier outputs (sign, exponent and mantissa bits).
Fig. 9 shows the pipelining stages as dotted lines.

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 9

Figure 9: Floating point multiplier with pipelined stages

Three pipelining stages mean that there is latency in the output by three clocks. The synthesis tool
“retiming” option was used so that the synthesizer uses its optimization logic to better place the
pipelining registers across the critical path.

6. RESULT

Figure 10: Simulation result of top multiplier

Fig.11 shows the RTL diagram of top multiplier which is having inputs A, B of 32 bit and output of
56bit.

Figure 11: RTL diagram of top multiplier

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 10

7. IMPLEMENTATION AND TESTING

The whole multiplier (top unit) was tested against the Xilinx floating point multiplier core generated
by Xilinx coregen. Xilinx core was customized to have two flags to indicate overflow and underflow,
and to have a maximum latency of three cycles. Xilinx core implements the “round to nearest”
rounding mode.

The area of Xilinx core is less than the implemented floating point multiplier because the latter
doesn’t truncate/round the 48 bits result of the mantissa multiplier which is reflected in the amount
of function generators and registers used to perform operations on the extra bits; also the speed of
Xilinx core is affected by the fact that it implements the round to nearest rounding mode.

8. CONCLUSIONS AND FUTURE WORK

This paper presents the implementation of a floating point multiplier compliant with the IEEE 754
binary interchange format. The design omits rounding and directly outputs the full 48-bit result of
the significand multiplication. This approach enhances precision when the output is subsequently
used in downstream units such as a floating point adder in a Multiply and Accumulate (MAC)
architecture. The multiplier is designed with a three-stage pipelined architecture and is
implemented on a Xilinx Virtex-5 FPGA. Post-synthesis, the design achieves a performance of 301
MFLOPs.

REFERENCES:

[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2018.

[2] B. Fagin and C. Renard, “Field Programmable Gate Arrays and Floating Point Arithmetic,” IEEE
Transactions on VLSI, vol. 2, no. 3, pp. 365–367, 2020.

[3] Naga Jyothi, Grande, Kundu Debanjan, and Gorantla Anusha. "ASIC implementation of fixed-point
iterative, parallel, and pipeline CORDIC algorithm." Soft Computing for Problem Solving: SocProS
2018, Volume 1. Singapore: Springer Singapore, 2019. 341-351.

[4] L. Louca, T. A. Cook, and W. H. Johnson, “Implementation of IEEE Single Precision Floating Point
Addition and Multiplication on FPGAs,” Proceedings of 83 the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM’96), pp. 107–116, 2022.

[5] A. Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of IEEE
ICASSP, 2001, vol. 2, pp.897-900.

[6] B. Lee and N. Burgess, “Parameterisable Floating-point Operations on FPGA,” Conference Record
of the Thirty-Sixth Asilomar Conference on Signals, Systems, and Computers, 2022

[7] “DesignChecker User Guide”, HDL Designer Series 2010.2a, Mentor Graphics, 2020

[8] “PrecisionR Synthesis User’s Manual”, Precision RTL plus 2020a update 2, Mentor Graphics,
2020.

 [9] Patterson, D. & Hennessy, J. (2025), Computer Organization and Design: The Hardware/software
Interface, Morgan Kaufmann.

ISSN: 2582 - 6379

IJISEA Publications

International Journal for Interdisciplinary Sciences and Engineering Applications
IJISEA - An International Peer- Reviewed, Open Access Journal

2025, Volume 6 Issue 3

www.ijisea.org

 Page 11

[10] NagaJyothi, Grande, and Sriadibhatla SriDevi. "Distributed arithmetic architectures for fir filters-
a comparative review." 2017 International conference on wireless communications, signal
processing and networking (WiSPNET). IEEE, 2017.

[11]. Sharma, Abhay, and Tarun Kumar Rawat. "Truncated Wallace Based Single Precision Floating
Point Multiplier." 2018 7th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions)(ICRITO). IEEE, 2018.

[12]. Ramya, V., and R. Seshasayanan. "Low power single precision BCD floating–point Vedic
multiplier." Microprocessors and Microsystems 72 (2020): 102930.

[13]. Avanija, J., et al. "Designing a fuzzy Q-learning power energy system using reinforcement
learning." International Journal of Fuzzy System Applications (IJFSA) 11.3 (2022): 1-12.

[14]. DiCecco, Roberto, Lin Sun, and Paul Chow. "FPGA-based training of convolutional neural
networks with a reduced precision floating-point library." 2017 International Conference on Field
Programmable Technology (ICFPT). IEEE, 2017.

[15]. Anuhya, Pasupuleti, and R. Dhanabal. "Asic Implementation of Efficient Floating Point
Multiplier." 2018 4th International Conference on Electrical Energy Systems (ICEES). IEEE,
2018

	Article Info
	Author Affiliations
	ABSTARCT
	1. INTRODUCTION
	2. FLOATING POINT MULTIPLICATION ALGORITHM
	3. HARDWARE OF FLOATING POINT MULTIPLIER
	REFERENCES:

